MNIST (keras:RNN) 画像分類

Normally, It would be used CNN or Dense for MNIST, but this time I used RNN. RNN training takes a lot of time. So you should use GPU. If you try to do around 50 epochs as shown below, it may take around 6 hours with GPU in Google Colab.

 

import os
import keras
import matplotlib.pyplot as plt
from keras.callbacks import ModelCheckpoint
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import SimpleRNN
from keras import initializers
from keras.optimizers import RMSprop


batch_size = 32
epochs = 50
learning_rate = 1e-6
clip_norm = 1.0

# Number of Output (Total 10 classes. 0,1,2,3,4,5,6,7,8,9)
num_classes = 10

# Number of nodes in the hidden layer
hidden_units = 100

# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(x_train.shape[0], -1, 1)
x_test = x_test.reshape(x_test.shape[0], -1, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

print('Evaluate IRNN...')

# initializers.RandomNormal : stddevは平均の標準偏差で重みを初期化する
# initializers.Identity : 単位行列で初期化する。Gainは乗ずる係数

model = Sequential()
model.add(SimpleRNN(hidden_units,
                    kernel_initializer=initializers.RandomNormal(stddev=0.001),
                    recurrent_initializer=initializers.Identity(gain=1.0),
                    activation='relu',
                    input_shape=x_train.shape[1:]))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
rmsprop = RMSprop(lr=learning_rate)

model.compile(loss='categorical_crossentropy',
              optimizer=rmsprop,
              metrics=['accuracy'])

# RNN takes a lot of time for training. So save file each epochs
os.makedirs('RNN_models', exist_ok=True)
model_checkpoint = ModelCheckpoint(
    filepath=os.path.join('RNN_models', 'model_{epoch:02d}_{val_loss:.2f}.h5'),
    monitor='val_loss',
    verbose=1)

history = model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=epochs,
          verbose=1,
          validation_data=(x_test, y_test), callbacks=[model_checkpoint])

scores = model.evaluate(x_test, y_test, verbose=0)

print('IRNN test score:', scores[0])
print('IRNN test accuracy:', scores[1])

# list all data in history
print(history.history.keys())

# To show accuracy and loss
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train_acc', 'val_acc'], loc='upper left')
plt.show()

plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['train_loss', 'val_loss'], loc='upper left')
plt.show()

 

 

x_train shape: (60000, 784, 1)
60000 train samples
10000 test samples
Evaluate IRNN...
Train on 60000 samples, validate on 10000 samples
Epoch 1/50
60000/60000 [==============================] - 294s 5ms/step - loss: 2.0851 - accuracy: 0.2159 - val_loss: 1.9936 - val_accuracy: 0.2391

Epoch 00001: saving model to RNN_models/model_01_1.99.h5
Epoch 2/50
60000/60000 [==============================] - 295s 5ms/step - loss: 1.9379 - accuracy: 0.2576 - val_loss: 1.8774 - val_accuracy: 0.2735

Epoch 00002: saving model to RNN_models/model_02_1.88.h5
Epoch 3/50
60000/60000 [==============================] - 293s 5ms/step - loss: 1.8195 - accuracy: 0.3131 - val_loss: 1.7195 - val_accuracy: 0.3505

Epoch 00003: saving model to RNN_models/model_03_1.72.h5
Epoch 4/50
60000/60000 [==============================] - 290s 5ms/step - loss: 1.7090 - accuracy: 0.3571 - val_loss: 1.7993 - val_accuracy: 0.3016

Epoch 00004: saving model to RNN_models/model_04_1.80.h5
Epoch 5/50
60000/60000 [==============================] - 290s 5ms/step - loss: 1.6616 - accuracy: 0.3752 - val_loss: 1.6570 - val_accuracy: 0.3862

Epoch 00005: saving model to RNN_models/model_05_1.66.h5
Epoch 6/50
60000/60000 [==============================] - 299s 5ms/step - loss: 1.6256 - accuracy: 0.3997 - val_loss: 1.5770 - val_accuracy: 0.4233

Epoch 00006: saving model to RNN_models/model_06_1.58.h5
Epoch 7/50
60000/60000 [==============================] - 290s 5ms/step - loss: 1.5908 - accuracy: 0.4270 - val_loss: 1.5732 - val_accuracy: 0.4450

Epoch 00007: saving model to RNN_models/model_07_1.57.h5
Epoch 8/50
60000/60000 [==============================] - 295s 5ms/step - loss: 1.5048 - accuracy: 0.4830 - val_loss: 1.3711 - val_accuracy: 0.5341

Epoch 00008: saving model to RNN_models/model_08_1.37.h5
Epoch 9/50
60000/60000 [==============================] - 288s 5ms/step - loss: 1.3558 - accuracy: 0.5304 - val_loss: 1.2829 - val_accuracy: 0.5594

Epoch 00009: saving model to RNN_models/model_09_1.28.h5
Epoch 10/50
60000/60000 [==============================] - 288s 5ms/step - loss: 1.3027 - accuracy: 0.5404 - val_loss: 1.2625 - val_accuracy: 0.5637

Epoch 00010: saving model to RNN_models/model_10_1.26.h5
Epoch 11/50
60000/60000 [==============================] - 286s 5ms/step - loss: 1.2676 - accuracy: 0.5507 - val_loss: 1.2109 - val_accuracy: 0.5682

Epoch 00011: saving model to RNN_models/model_11_1.21.h5
Epoch 12/50
60000/60000 [==============================] - 289s 5ms/step - loss: 1.2350 - accuracy: 0.5619 - val_loss: 1.2504 - val_accuracy: 0.5544

Epoch 00012: saving model to RNN_models/model_12_1.25.h5
Epoch 13/50
60000/60000 [==============================] - 290s 5ms/step - loss: 1.2038 - accuracy: 0.5720 - val_loss: 1.2332 - val_accuracy: 0.5678

Epoch 00013: saving model to RNN_models/model_13_1.23.h5
Epoch 14/50
60000/60000 [==============================] - 288s 5ms/step - loss: 1.1773 - accuracy: 0.5818 - val_loss: 1.1394 - val_accuracy: 0.5947

Epoch 00014: saving model to RNN_models/model_14_1.14.h5
Epoch 15/50
60000/60000 [==============================] - 289s 5ms/step - loss: 1.1503 - accuracy: 0.5904 - val_loss: 1.1122 - val_accuracy: 0.6089

Epoch 00015: saving model to RNN_models/model_15_1.11.h5
Epoch 16/50
60000/60000 [==============================] - 291s 5ms/step - loss: 1.1345 - accuracy: 0.5956 - val_loss: 1.0938 - val_accuracy: 0.6100

Epoch 00016: saving model to RNN_models/model_16_1.09.h5
Epoch 17/50
60000/60000 [==============================] - 287s 5ms/step - loss: 1.1224 - accuracy: 0.5976 - val_loss: 1.1862 - val_accuracy: 0.5709

Epoch 00017: saving model to RNN_models/model_17_1.19.h5
Epoch 18/50
60000/60000 [==============================] - 294s 5ms/step - loss: 1.1107 - accuracy: 0.6031 - val_loss: 1.0659 - val_accuracy: 0.6145

Epoch 00018: saving model to RNN_models/model_18_1.07.h5
Epoch 19/50
60000/60000 [==============================] - 289s 5ms/step - loss: 1.1045 - accuracy: 0.6053 - val_loss: 1.1522 - val_accuracy: 0.5917

Epoch 00019: saving model to RNN_models/model_19_1.15.h5
Epoch 20/50
60000/60000 [==============================] - 292s 5ms/step - loss: 1.0969 - accuracy: 0.6077 - val_loss: 1.0622 - val_accuracy: 0.6161

Epoch 00020: saving model to RNN_models/model_20_1.06.h5
Epoch 21/50
60000/60000 [==============================] - 288s 5ms/step - loss: 1.0899 - accuracy: 0.6096 - val_loss: 1.1096 - val_accuracy: 0.6040

Epoch 00021: saving model to RNN_models/model_21_1.11.h5
Epoch 22/50
60000/60000 [==============================] - 289s 5ms/step - loss: 1.0852 - accuracy: 0.6093 - val_loss: 1.0536 - val_accuracy: 0.6228

Epoch 00022: saving model to RNN_models/model_22_1.05.h5
Epoch 23/50
60000/60000 [==============================] - 288s 5ms/step - loss: 1.0790 - accuracy: 0.6134 - val_loss: 1.0432 - val_accuracy: 0.6279

Epoch 00023: saving model to RNN_models/model_23_1.04.h5
Epoch 24/50
60000/60000 [==============================] - 289s 5ms/step - loss: 1.0752 - accuracy: 0.6140 - val_loss: 1.0276 - val_accuracy: 0.6249

Epoch 00024: saving model to RNN_models/model_24_1.03.h5
Epoch 25/50
60000/60000 [==============================] - 287s 5ms/step - loss: 1.0697 - accuracy: 0.6171 - val_loss: 1.1263 - val_accuracy: 0.5990

Epoch 00025: saving model to RNN_models/model_25_1.13.h5
Epoch 26/50
60000/60000 [==============================] - 286s 5ms/step - loss: 1.0645 - accuracy: 0.6166 - val_loss: 1.0709 - val_accuracy: 0.6155

Epoch 00026: saving model to RNN_models/model_26_1.07.h5
Epoch 27/50
60000/60000 [==============================] - 287s 5ms/step - loss: 1.0608 - accuracy: 0.6184 - val_loss: 1.0165 - val_accuracy: 0.6312

Epoch 00027: saving model to RNN_models/model_27_1.02.h5
Epoch 28/50
60000/60000 [==============================] - 287s 5ms/step - loss: 1.0563 - accuracy: 0.6206 - val_loss: 1.0324 - val_accuracy: 0.6301

Epoch 00028: saving model to RNN_models/model_28_1.03.h5
Epoch 29/50
60000/60000 [==============================] - 289s 5ms/step - loss: 1.0539 - accuracy: 0.6196 - val_loss: 1.0435 - val_accuracy: 0.6242

Epoch 00029: saving model to RNN_models/model_29_1.04.h5
Epoch 30/50
60000/60000 [==============================] - 294s 5ms/step - loss: 1.0498 - accuracy: 0.6219 - val_loss: 1.0402 - val_accuracy: 0.6229

Epoch 00030: saving model to RNN_models/model_30_1.04.h5
Epoch 31/50
60000/60000 [==============================] - 293s 5ms/step - loss: 1.0447 - accuracy: 0.6238 - val_loss: 1.0072 - val_accuracy: 0.6354

Epoch 00031: saving model to RNN_models/model_31_1.01.h5
Epoch 32/50
60000/60000 [==============================] - 300s 5ms/step - loss: 1.0414 - accuracy: 0.6244 - val_loss: 1.0305 - val_accuracy: 0.6292

Epoch 00032: saving model to RNN_models/model_32_1.03.h5
Epoch 33/50
60000/60000 [==============================] - 291s 5ms/step - loss: 1.0377 - accuracy: 0.6243 - val_loss: 0.9989 - val_accuracy: 0.6385

Epoch 00033: saving model to RNN_models/model_33_1.00.h5
Epoch 34/50
60000/60000 [==============================] - 290s 5ms/step - loss: 1.0336 - accuracy: 0.6235 - val_loss: 1.0005 - val_accuracy: 0.6367

Epoch 00034: saving model to RNN_models/model_34_1.00.h5
Epoch 35/50
60000/60000 [==============================] - 290s 5ms/step - loss: 1.0294 - accuracy: 0.6268 - val_loss: 1.0161 - val_accuracy: 0.6327

Epoch 00035: saving model to RNN_models/model_35_1.02.h5
Epoch 36/50
60000/60000 [==============================] - 289s 5ms/step - loss: 1.0261 - accuracy: 0.6278 - val_loss: 1.0363 - val_accuracy: 0.6246

Epoch 00036: saving model to RNN_models/model_36_1.04.h5
Epoch 37/50
60000/60000 [==============================] - 294s 5ms/step - loss: 1.0219 - accuracy: 0.6296 - val_loss: 0.9985 - val_accuracy: 0.6356

Epoch 00037: saving model to RNN_models/model_37_1.00.h5
Epoch 38/50
60000/60000 [==============================] - 294s 5ms/step - loss: 1.0182 - accuracy: 0.6291 - val_loss: 1.0273 - val_accuracy: 0.6266

Epoch 00038: saving model to RNN_models/model_38_1.03.h5
Epoch 39/50
60000/60000 [==============================] - 296s 5ms/step - loss: 1.0143 - accuracy: 0.6292 - val_loss: 0.9759 - val_accuracy: 0.6464

Epoch 00039: saving model to RNN_models/model_39_0.98.h5
Epoch 40/50
60000/60000 [==============================] - 295s 5ms/step - loss: 1.0100 - accuracy: 0.6303 - val_loss: 0.9899 - val_accuracy: 0.6395

Epoch 00040: saving model to RNN_models/model_40_0.99.h5
Epoch 41/50
60000/60000 [==============================] - 295s 5ms/step - loss: 1.0073 - accuracy: 0.6323 - val_loss: 0.9669 - val_accuracy: 0.6459

Epoch 00041: saving model to RNN_models/model_41_0.97.h5
Epoch 42/50
60000/60000 [==============================] - 291s 5ms/step - loss: 1.0025 - accuracy: 0.6327 - val_loss: 0.9786 - val_accuracy: 0.6412

Epoch 00042: saving model to RNN_models/model_42_0.98.h5
Epoch 43/50
60000/60000 [==============================] - 297s 5ms/step - loss: 0.9984 - accuracy: 0.6338 - val_loss: 0.9634 - val_accuracy: 0.6448

Epoch 00043: saving model to RNN_models/model_43_0.96.h5
Epoch 44/50
60000/60000 [==============================] - 291s 5ms/step - loss: 0.9962 - accuracy: 0.6348 - val_loss: 0.9699 - val_accuracy: 0.6464

Epoch 00044: saving model to RNN_models/model_44_0.97.h5
Epoch 45/50
60000/60000 [==============================] - 298s 5ms/step - loss: 0.9908 - accuracy: 0.6378 - val_loss: 0.9642 - val_accuracy: 0.6445

Epoch 00045: saving model to RNN_models/model_45_0.96.h5
Epoch 46/50
60000/60000 [==============================] - 289s 5ms/step - loss: 0.9883 - accuracy: 0.6373 - val_loss: 0.9665 - val_accuracy: 0.6447

Epoch 00046: saving model to RNN_models/model_46_0.97.h5
Epoch 47/50
60000/60000 [==============================] - 292s 5ms/step - loss: 0.9850 - accuracy: 0.6402 - val_loss: 0.9655 - val_accuracy: 0.6432

Epoch 00047: saving model to RNN_models/model_47_0.97.h5
Epoch 48/50
60000/60000 [==============================] - 292s 5ms/step - loss: 0.9818 - accuracy: 0.6406 - val_loss: 0.9412 - val_accuracy: 0.6544

Epoch 00048: saving model to RNN_models/model_48_0.94.h5
Epoch 49/50
60000/60000 [==============================] - 295s 5ms/step - loss: 0.9775 - accuracy: 0.6429 - val_loss: 0.9778 - val_accuracy: 0.6408

Epoch 00049: saving model to RNN_models/model_49_0.98.h5
Epoch 50/50
60000/60000 [==============================] - 295s 5ms/step - loss: 0.9733 - accuracy: 0.6439 - val_loss: 1.0379 - val_accuracy: 0.6265

Epoch 00050: saving model to RNN_models/model_50_1.04.h5
IRNN test score: 1.037883185005188
IRNN test accuracy: 0.6265000104904175

 

It hasn’t grown at all since around the 20 epoch. RNN might be not suitable for images. Thanks.

 

 

 

Add a Comment

Your email address will not be published.